Pages


I made this widget at MyFlashFetish.com.

Tuesday, July 26, 2011

RESISTOR (2)

Bahan-Bahan Resistor :

DAYA HANTAR JENIS
Daya hantar jenis merupakan kemampuan suatu penghantar untuk menghantarkan listrik. Jika nilai daya hantar jenis besar, maka hambatan jenis kecil. Jika daya hantar jenis kecil, maka hambatan jenis besar. Jadi, nilai daya hantar jenis  nilainya berbanding terbalik dengan hambatan jenis.

PENGARUH SUHU PADA HAMBATAN
Nilai hambatan dari suatu penghambat akan berubah jika temperatur berubah. Ada materi yang nilai hambatannya bertambah jika suhu naik. Materi seperti ini disebut memiliki Koefisien suhu positif (Positive thermal coefficient), sedangkan materi yang nilai hambatan nya berkurang jika temperatur naik disebut memiliki Koefisien suhu negatif (negative thermal coefficient).
Pada logam yang murni, kenaikan suhu 2.5 derajat celcius menaikkan hambatan sekitar 1%.

Daftar tahanan jenis, daya hantar jenis dan koefisien suhu dari beberapa logam dan campuran

Bahan Logam
Tahanan Jenis/Density
Pada suhu 15°C
Ω mm2/m
Daya Hantar Jenis
Pada suhu 15°C
m/Ωmm2
Koefisien Suhu
1/°C
Aluminium
0.03
33.3
0.0039
Bismuth
1.2
0.83
0.004
Tembaga
0.0172
57
0.004
Air Raksa
0.95
1.05
0.0009
Timah
0.21
4.67
0.0037
Nikel
0.12
8.33
0.0037
Platina
0.095
10.5
0.0024
Wolfram
0.055
18.2
0.004
Besi
0.12
8.33
0.0045
Perak
0.016
60.6
0.0036
Seng
0.061
16.4
0.0037
Campuran



Perunggu
0.03
33.3
0.001
Nekel Khrom
1.-
1.-
0.0003
Constataan
0.5
2.-
-
Manganina
0.42
2.4
0.00001
Messing
0.008
12.5
0.0015
Niskeline
0.42
2.4
0.0002
Perak Baru
0.3
3.3
0.0002
Rheetan
0.47
2.1
0.00023

RESISTOR (1)

Resistor merupakan suatu komponen elektronika yang bersifat akan menghambat/membatasi aliran arus yang melewatinya.
Contoh Gambar Resistor

Simbol Resistor


Daftar Kode warna nilai hambatan Resistor

Warna
Ring 1
(Puluhan)
Ring 2
(Satuan)
Ring3
(Faktor Pengali)
Ring4
(Toleransi)
Hitam
-
0
100
20%
Cokelat
1
1
101
1%
Merah
2
2
102
2%
Jingga
3
3
103
3%
Kuning
4
4
104
4%
Hijau
5
5
105
5%
Biru
6
6
106
6%
Ungu
7
7
107
7%
Abu-abu
8
8
108
8%
Putih
9
9
109
9%
Emas
-
-
10-1
5%
Perak
-
-
10-2
10%
Tidak berwarna
-
-
-
20%
Contoh : 
1. Cokelat   Hitam    Biru     Emas
         1            0        x106     ±5%            =  10.000.000 ±5% = 10M±5%

2. Jingga     Putih        Kuning        Perak
         3             9              x104          ±10%  =   390.000±10%  = 390K±10%


Contoh :
1. Cokelat         Merah          Hijau              Merah                emas
          1                 2                 5                    2                         5%      =    12500  ±5%     (12K5  ±5%)

Contoh : 
1. Merah          Biru           Hitam          Cokelat           Cokelat            Merah
       2                  6               0                   1                    1%                   2%      =  2600  ±1% s/d 2%  





Friday, July 1, 2011

Simbol-Simbol Elektronika

Simbol merupakan sesuatu yang sangat penting dalam dunia elektronika. Di dalam penggambaran skema rangkaian, digunakan simbol-simbol untuk lebih memudahkan. Simbol-simbol yang dipakai pun tentunya harus sama di seluruh dunia.

Ada orang berkata bahwa tanpa mengetahui simbol-simbol dalam elektronika, mustahil kita dapat menguasai elektronika dengan baik.
Berikut ini merupakan simbol-simbol yang sering digunakan dalam dunia elektronika:


























Masih banyak simbol-simbol lain dalam dunia elektronika. Postingan saya ini hanya memuat simbol-simbol yang biasa digunakan dalam penggambaran skema rangkaian. Semoga dapat membantu...

Teori Dasar Listrik

1. Arus Listrik

adalah mengalirnya elektron secara terus menerus dan berkesinambungan pada konduktor akibat perbedaan jumlah elektron pada beberapa lokasi yang jumlah elektronnya tidak sama. satuan arus listrik adalah Ampere.

Arus listrik bergerak dari terminal positif (+) ke terminal negatif (-), sedangkan aliran listrik dalam kawat logam terdiri dari aliran elektron yang bergerak dari terminal negatif (-) ke terminal positif(+), arah arus listrik dianggap berlawanan dengan arah gerakan elektron.


Gambar 1. Arah arus listrik dan arah gerakan elektron.
“1 ampere arus adalah mengalirnya elektron sebanyak 624x10^16 (6,24151 × 10^18) atau sama dengan 1 Coulumb per detik melewati suatu penampang konduktor” 
Formula arus listrik adalah:

I = Q/t (ampere)
Dimana:
I = besarnya arus listrik yang mengalir, ampere
Q = Besarnya muatan listrik, coulomb
t = waktu, detik
2. Kuat Arus Listrik

Adalah arus yang tergantung pada banyak sedikitnya elektron bebas yang pindah melewati suatu penampang kawat dalam satuan waktu.

Definisi : “Ampere adalah satuan kuat arus listrik yang dapat memisahkan 1,118 milligram perak dari nitrat perak murni dalam satu detik”.

Rumus – rumus untuk menghitung banyaknya muatan listrik, kuat arus dan waktu:

Q = I x t
I = Q/t
t = Q/I

Dimana :
Q = Banyaknya muatan listrik dalam satuan coulomb
I = Kuat Arus dalam satuan Amper.
t = waktu dalam satuan detik.
“Kuat arus listrik biasa juga disebut dengan arus listrik”
“muatan listrik memiliki muatan positip dan muatan negatif. Muatan positip dibawa oleh proton, dan muatan negatif dibawa oleh elektro. Satuan muatan ”coulomb (C)”, muatan proton +1,6 x 10^-19C, sedangkan muatan elektron -1,6x 10^-19C. Muatan yang bertanda sama saling tolak menolak, muatan bertanda berbeda saling tarik menarik”
3. Rapat Arus

Difinisi :
“rapat arus ialah besarnya arus listrik tiap-tiap mm² luas penampang kawat”.


Gambar 2. Kerapatan arus listrik.

Arus listrik mengalir dalam kawat penghantar secara merata menurut luas penampangnya. Arus listrik 12 A mengalir dalam kawat berpenampang 4mm², maka kerapatan arusnya 3A/mm² (12A/4 mm²), ketika penampang penghantar mengecil 1,5mm², maka kerapatan arusnya menjadi 8A/mm² (12A/1,5 mm²).

Kerapatan arus berpengaruh pada kenaikan temperatur. Suhu penghantar dipertahankan sekitar 300°C, dimana kemampuan hantar arus kabel sudah ditetapkan dalam tabel Kemampuan Hantar Arus (KHA).


Tabel 1. Kemampuan Hantar Arus (KHA)

Berdasarkan tabel KHA kabel pada tabel diatas, kabel berpenampang 4 mm², 2 inti kabel memiliki KHA 30A, memiliki kerapatan arus 8,5A/mm². Kerapatan arus berbanding terbalik dengan penampang penghantar, semakin besar penampang penghantar kerapatan arusnya mengecil.

Rumus-rumus dibawah ini untuk menghitung besarnya rapat arus, kuat arus dan penampang kawat:

J = I/A
I = J x A
A = I/J

Dimana:
J = Rapat arus [ A/mm²]
I = Kuat arus [ Amp]
A = luas penampang kawat [ mm²]

4. Tahanan dan Daya Hantar Penghantar

Penghantar dari bahan metal mudah mengalirkan arus listrik, tembaga dan aluminium memiliki daya hantar listrik yang tinggi. Bahan terdiri dari kumpulan atom, setiap atom terdiri proton dan elektron. Aliran arus listrik merupakan aliran elektron. Elektron bebas yang mengalir ini mendapat hambatan saat melewati atom sebelahnya. Akibatnya terjadi gesekan elektron denganatom dan ini menyebabkan penghantar panas. Tahanan penghantar memiliki sifat menghambat yang terjadi pada setiap bahan.

Tahanan didefinisikan sebagai berikut :
“1 Ω (satu Ohm) adalah tahanan satu kolom air raksa yang panjangnya 1063 mm dengan penampang 1 mm² pada temperatur 0° C"

Daya hantar didefinisikan sebagai berikut:
“Kemampuan penghantar arus atau daya hantar arus sedangkan penyekat atau isolasi adalah suatu bahan yang mempunyai tahanan yang besar sekali sehingga tidak mempunyai daya hantar atau daya hantarnya kecil yang berarti sangat sulit dialiri arus listrik”.

Rumus untuk menghitung besarnya tahanan listrik terhadap daya hantar arus:

R = 1/G
G = 1/R

Dimana :
R = Tahanan/resistansi [ Ω/ohm]
G = Daya hantar arus /konduktivitas [Y/mho]


Gambar 3. Resistansi Konduktor

Tahanan penghantar besarnya berbanding terbalik terhadap luas penampangnya dan juga besarnya tahanan konduktor sesuai hukum Ohm.
“Bila suatu penghantar dengan panjang l , dan diameter penampang q serta tahanan jenis ρ (rho), maka tahanan penghantar tersebut adalah” :

R = ρ x l/q

Dimana :
R = tahanan kawat [ Ω/ohm]
l = panjang kawat [meter/m] l
ρ = tahanan jenis kawat [Ωmm²/meter]
q = penampang kawat [mm²]

faktot-faktor yang mempengaruhi nilai resistant atau tahanan, karena tahanan suatu jenis material sangat tergantung pada :
• panjang penghantar.
• luas penampang konduktor.
• jenis konduktor .
• temperatur.
"Tahanan penghantar dipengaruhi oleh temperatur, ketika temperatur meningkat ikatan atom makin meningkat akibatnya aliran elektron terhambat. Dengan demikian kenaikan temperatur menyebabkan kenaikan tahanan penghantar"

5. potensial atau Tegangan

potensial listrik adalah fenomena berpindahnya arus listrik akibat lokasi yang berbeda potensialnya. dari hal tersebut, kita mengetahui adanya perbedaan potensial listrik yang sering disebut “potential difference atau perbedaan potensial”. satuan dari potential difference adalah Volt.
“Satu Volt adalah beda potensial antara dua titik saat melakukan usaha satu joule untuk memindahkan muatan listrik satu coulomb”

Formulasi beda potensial atau tegangan adalah:

V = W/Q [volt]

Dimana:
V = beda potensial atau tegangan, dalam volt
W = usaha, dalam newton-meter atau Nm atau joule
Q = muatan listrik, dalam coulomb

RANGKAIAN LISTRIK

Pada suatu rangkaian listrik akan mengalir arus, apabila dipenuhi syarat-syarat sebagai berikut :
1. Adanya sumber tegangan
2. Adanya alat penghubung
3. Adanya beban


Gambar 4. Rangkaian Listrik.

Pada kondisi sakelar S terbuka maka arus tidak akan mengalir melalui beban . Apabila sakelar S ditutup maka akan mengalir arus ke beban R dan Ampere meter akan menunjuk. Dengan kata lain syarat mengalir arus pada suatu rangkaian harus tertutup.
1. Cara Pemasangan Alat Ukur.
Pemasangan alat ukur Volt meter dipasang paralel dengan sumber tegangan atau beban, karena tahanan dalam dari Volt meter sangat tinggi. Sebaliknya pemasangan alat ukur Ampere meter dipasang seri, hal inidisebabkan tahanan dalam dari Amper meter sangat kecil.
“alat ukur tegangan adalah voltmeter dan alat ukur arus listrik adalah amperemeter”
2. Hukum Ohm 
Pada suatu rangkaian tertutup, Besarnya arus I berubah sebanding dengan tegangan V dan berbanding terbalik dengan beban tahanan R, atau dinyatakan dengan Rumus :

I = V/R
V = R x I
R = V/I

Dimana;
I = arus listrik, ampere
V = tegangan, volt
R = resistansi atau tahanan, ohm

• Formula untuk menghtung Daya (P), dalam satuan watt adalah:
P = I x V
P = I x I x R
P = I² x R
3. HUKUM KIRCHOFF 

Pada setiap rangkaian listrik, jumlah aljabar dari arus-arus yang bertemu di satu titik adalah nol (ΣI=0).


Gambar 5. loop arus“ KIRChOFF “

Jadi:
I1 + (-I2) + (-I3) + I4 + (-I5 ) = 0
I1 + I4 = I2 + I3 + I5 

Dioda

Dioda merupakan penyatuan dari lapisan P dan N sebagaimana gambar struktur dan simbol lapisan.


Syarat dioda dalam keadaan ON adalah Vak positip sedangkan untuk OFF adalah Vak negatif.


Karateristik tersebut menggambarkan hubungan antara arus dioda (IR dan IF) agar Vak dalam kondisi menahan arus (OFF) maupun dalam keadaan mengalir (ON). Dalam keadaan OFF, Vak = Vr = negatif, maka dioda menahan arus namun terdapat arus bocor Ir yang kecil.

Dalam keadaan ON, Vak = Vf = positif, dioda mengalirkan arus namun terdapat tegangan jatuh pada dioda = ∆ Vf, dan jika ∆ Vf ini makin besar untuk arus dioda yang makin tinggi, berarti rugi konduksi If * ∆ Vf naik. Terlihat pula pada karateristik dioda diatas bahwa bila Vr terlalu tinggi dioda akan rusak.
Karateristik Switching

Karateristik ini menggambarkan sifat kerja dioda dalam perpindahan keadaan ON ke OFF dan sebaliknya.


Dioda akan segera melalukan arus jika Vr telah mencapai lebih dari Vf minimum dioda kondusif dan pada saat OFF terjadi kelambatan dari dioda untuk kembali mempunyai kemampuan memblokir tegangan reverse. Dari gambar diatas tgerlihat adanya arus balik sesaat pada dioda, dimana arus balik ini terjadi pada saat peralihan keadaan dioda dari kondisi ON ke kondisi membloking tegangan reverse.

Dengan adanya sifat arus balik, maka diperoleh dua jenis penggolongan dioda yaitu :
1. Dioda Cepat, yaitu dioda dengan kemapuan segera mampu membloking
tegangan reverse yang cepat, orde 200 ns terhitung sejak arus forward dioda
sama dengan 0 (nol).

2. Dioda Lambat, yaitu untuk hal yang sama dioda memerlukan waktu lebih lama,
Q32 > Qs1.
Terminologi karateristik dioda

Trr : Reverse Recovery Time, waktu yang diperlukan dioda untuk bersifat membloking tegangan forward.
Tjr : Waktu yang diperlukan oleh Juction P-N untuk bersifat membloking.
Tbr : Waktu yang diperlukan daerah perbatasan Junction untuk membentuk zone bloking.
Qs : Jumlah muatan yang mengalir dalam arah reverse selama perpindahan status dioda ON ke OFF.

Dioda jenis lambat banyak digunakan pada rangkaian konverter dengan komutasi lambat/natural, seperti rangkaian penyearah. Sedangkan Dioda jenis Cepat dipergunakan pada konverter statis dengan komutasi sendiri seperti misalnya pada DC Chopper, konverter komutasi sendiri dll.
Kemampuan Tegangan 
Dioda bersifat memblokir tegangan reverse, ternyata mampu menahan tegangan tersebut tergantung pada karateristik tegangan itu sendiri.


VRWM = Puncak tegangan kerja normal.
VRRM = Puncak tegangan lebih yang terjadi secara periodik.
VRSM = Puncak tegangan lebih tidak periodik.
Kemampuan Arus Dioda

Adanya tegangan jatuh konduksi ∆ Vf menyebabkan rugi daya pada dioda yang keluar dalam bentuk panas. Temperatur junction maksimum terletak antara 110°C - 125°C. Panas yang melebihi dari temperatur ini akan menyebabkan dioda rusak. Temperatur maksimum ini dapat dicapai oleh bermacam-macam pembebanan arus terhadap dioda.


If (AV) : Arus rata-rata maksimum yang diijinkan setiap harga arus rata-rata akan menghasilkan suatu harga temperatur akhir pada junction dioda. Batas If (AV) ini juga tergantung pada temperatur ruang dan jenis sistem pendinginan (Heat-sink).

If (RMS) : Harga effektif maksimum arus dioda. Harga rata-rata yang di bawah If (∆V) maksimum, belum menjamin keamanan operasi dioda terutama arus beban dioda dengan form factor yang tinggi. ( Rate Mean Square )

If (RM) : Harga puncak arus lebih periodik yang diijinkan.

If (SM) : Harga puncak arus lebih non periodik yang diijinkan

T : Batas integral pembebanan arus dimana dioda masih mampu mengalaminya.

Besaran ini berlaku untuk ½ cycles atau 1 ms dan merupakan pedoman dalam pemilihan pengaman arus.

Contoh data Fast Dioda Type MF 70
Maximum repetitive peak reverse voltage, Vdrm = 1200 Volt.
Mean forward current, If (AV) = 70 A
RMS forward current, Irms max = 110 A
Non repetitive forward current, If (ms) = 700 A
Forward V-Drop, Vfm=V, pada Ifm = 210 A
Peak reverse current, Irm = 5 mA
Reverse recovery time, trr = 200 ns
Stored, charger, Qrr = T µc (Qs)
Thermal resistance, Rth-jc = 0,37°C/w